Phosphatase Subfamily PPP1C

From PhosphataseWiki
Revision as of 17:43, 3 April 2015 by Mark (Talk | contribs)

Jump to: navigation, search

Phosphatase Classification: Fold MTDP: Superfamily MTDP: Family PPP: Subfamily PPP1C

PPP1C is a ubiquitous serine/threonine phosphatase found throughout eukaryotes and even in some prokaryotes. By forming complexes with different regulatory subunits, it is involved in many various processes.

Evolution

PPP1C subfamily is found throughout eukaryotes even in some prokaryotes. It has many lineage-specific gene duplications. In particular, 10 PPP1Cs are found in fruit fly, 3 in human, 3 in C. elegans, and 4 in yeast.

Domain

PPP1C has a single domain - phosphatase domain.

Functions

The PPP1C subfamily is the catalytic subunit of PP1 holoenzyme binding to regulatory subunits to achieve diverse functions [1]. Over 50 different regulatory subunits are known in human and at least 20 in yeast. These different complexes play key roles in various cellular processes from cell cycle progression [2] to glycogen metabolism. Below are some examples:

PPP1C, in complex with regulatory subunits, dephosphorylates the substrates below:

  • eIF2α. PPP1C-PPP1R15A holophosphatase in complex with G-actin, dephosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) and inhibits integrated stress response (ISR) [3].

References

  1. Heroes E, Lesage B, Görnemann J, Beullens M, Van Meervelt L, and Bollen M. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013 Jan;280(2):584-95. DOI:10.1111/j.1742-4658.2012.08547.x | PubMed ID:22360570 | HubMed [heroes13]
  2. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, Smith DL, Pines J, and Hagan IM. A PP1-PP2A phosphatase relay controls mitotic progression. Nature. 2015 Jan 1;517(7532):94-98. DOI:10.1038/nature14019 | PubMed ID:25487150 | HubMed [grallert14]
  3. Chambers JE, Dalton LE, Clarke HJ, Malzer E, Dominicus CS, Patel V, Moorhead G, Ron D, and Marciniak SJ. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation. Elife. 2015 Mar 16;4. DOI:10.7554/eLife.04872 | PubMed ID:25774599 | HubMed [Chambers15]
All Medline abstracts: PubMed | HubMed