Difference between revisions of "Phosphatase Family PPPc"
(→Subfamilies) |
(→PPP3C (PP2B, calcineurin) subfamily) |
||
Line 17: | Line 17: | ||
======[[Phosphatase_Subfamily_PPP6C|PPP6C]] (PP6) ====== | ======[[Phosphatase_Subfamily_PPP6C|PPP6C]] (PP6) ====== | ||
− | ======PPP3C (PP2B, calcineurin) | + | ======[[Phosphatase_Subfamily_PPP3C|PPP3C]] (PP2B, calcineurin) ====== |
− | PPP3C is | + | PPP3C is the catalytic subunit of calcium-dependent phosphatase holoenzyme PP2B or calcineurin. The holoenzyme is heterodimer complex consisting of one catalytic subunit and one regulatory subunit. PPP3C is conserved from yeast to human, and it participates in very various cellular processes, from cell cycle progression to cardiac hypertrophy (see review PMID: 11015619). In particular, it activates the T cells of the immune system in mammals. When an antigen-preseting cell interacts with a T cell receptor on T cells, the cytoplasmic level of calcium increases, which activates calcineurin. Calcineurin activates a vertebrate-specific transcription factor called NFATc. It is used as a target for several immunosuppressive drugs. This phosphatase has clinical significance for schizophrenia and diabetes. |
− | + | ||
− | + | ||
======PPP5C subfamily====== | ======PPP5C subfamily====== |
Revision as of 18:48, 5 January 2015
Phosphatase Classification: Fold MTDP: Superfamily MTDP: Family PPP
PPP can be found in both eukaryotes and prokaryotes. PPPs share the highest sequence similarity compared to other phosphatase superfamilies. PPP carries out phosphatase activity through complex (aka holoenzyme) rather than in monoenzyme. The PPP holoenzyme consists of one catalytic subunit and one or two regulatory subunits. Here, we focus on the catalytic subunit only. (PS: PPP has a large number of regulatory subunits. Perhaps, it is better to study and document their evolution and function by complex.)
Contents
Subfamilies
Note: PPP2C, PPP4C, PPP6C is grouped as PP2A family in literature sometimes.
PPP1C (PP1)
PPP1C, catalytic subunit of holoenzyme PP1, is a ubiquitous serine/threonine phosphatase found throughout eukaryotes and even in some prokaryotes. Holoenzyme PP1 is involved in many various processes.
PPP2C (PP2A)
PPP2C, catalytic subunit of holoenzyme PP2A, is found throughout eukaryotes with various number in different lineages. PP2A accounts for the majority of phospho-serine/threonine phosphatase activity in most cells and is involved in the regulation of nearly every cellular process.
PPP4C (PP4)
PPP4C, the catalytic subunit of Protein Phosphatase 4 (PP4) holoenzyme, is found widely in eukaryotes including animals, plants and fungi. Like other members in this family, PP4 has many different substrates and is involved in a wide variety of processes.
PPP6C (PP6)
PPP3C (PP2B, calcineurin)
PPP3C is the catalytic subunit of calcium-dependent phosphatase holoenzyme PP2B or calcineurin. The holoenzyme is heterodimer complex consisting of one catalytic subunit and one regulatory subunit. PPP3C is conserved from yeast to human, and it participates in very various cellular processes, from cell cycle progression to cardiac hypertrophy (see review PMID: 11015619). In particular, it activates the T cells of the immune system in mammals. When an antigen-preseting cell interacts with a T cell receptor on T cells, the cytoplasmic level of calcium increases, which activates calcineurin. Calcineurin activates a vertebrate-specific transcription factor called NFATc. It is used as a target for several immunosuppressive drugs. This phosphatase has clinical significance for schizophrenia and diabetes.
PPP5C subfamily
PPP5C also known as Protein Phospahtase 5 (PP5) is unique among PPP family members in that its catalytic and regulatory domains are contained in the same polypeptide chain. It has a tetratricopeptide repeat (TPR) domain which maintains the phosphatase in an auto-inhibited conformation that is neutralized when the heat shock protein Hsp90, or fatty acids, bind to this region. ε.
The phosphatase interacts with various proteins and participate in multiple signaling pathways. The phosphatase interacts with ATM, ATR, 53BP1, and DNA-depdent protein kianse catalytic subunits (DNA-PKc) following DNA damage. While enchance the activity of ATM and ATR, the phosphatase negatively regulates 53BP1 and DNA-PKc by dephosphorylating them. It regulates Raf-MEK-ERK pathway via inhibiting Raf-1 by dephosphorylating Serine 338. PPP5 is involved in mammalian circadian clock by activating the major clock kinae casein kinase I (CKI) ε. In addition, the elevated levels of this phosphatase may be associated with breast cancer development.
PPP7C (PPEF) subfamily
PPEFs contain calmodulin-binding motif IQ and calcium-binding domains EF hand to the N- and C-terminal side of phosphatase domain, respectively, which suggests its involvement in calcium signaling. This would be a reminiscent of another PPP subfamily, PPP3C (calcineurin/PP2B), which are regulated by calmodulin and another EF-hand protein, calcineurin B.
In C. elegans, Drosophila and mammals, PPEF expression was mainly detected in various sensory neurons. The Drosophila PPEF phosphatase, rdgC, is essential for dephosphorylation of rhodopsin. However, mice lacking both PPEF1 and PPEF2 showed no signs of photoreceptor synases. PPEF is present not only in animals but unicellular eukaryotes, indicating its ancient origin and basic functions of eukaryotes. The function and evolution of this phosphatase is reviewed in paper PMID: 19662497.
YNL217W (yeast) subfamily
Function unknown. It is found in most fungi, some basal metazoans but absent from almost all of deuterostomia, some basal eukaryotes (Chromalveolata and Excavata), but not found in plants or amoebazoan. (Note: the evolutionary history is from gOrtholog.)
PPG1 (yeast) subfamily
The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation (see SGD database). It is found in all fungi, and absent from holozoan. It is not found in plants, but is found in Dictyostellium and some basal eukaryotes. (Note: the evolutionary history is from gOrtholog.)
Nematode-specific PPP subfamilies
At least 36 PPPs are only found in C. elegans. Taking account the total number of PPPs in most eukaryotes is less than 20, this expansion is very unusual. However, almost nothing is known about these phosphatases.