Phosphatase Subfamily PTPRB

From PhosphataseWiki
Jump to: navigation, search

Phosphatase Classification: Fold CC1: Superfamily CC1: Family PTP: Subfamily PTPRB

PTPRB (aka R3) is a metazoan-specific subfamily of receptor PTPs, with diverse functions.

Evolution

PTPRB is found across metazoa, often with multiple members per species. Human members are PTPRB, PTPRH, PTPRJ, PTPRO, and PTPRQ, while C. elegans has a single gene, dep-1 and Drosophila has two: Ptp4E and Ptp10D. Distinct PTPRB and PTPRQ orthologs are seen in invertebrate chordates [1].

Domain Structure

The canonical domain structure is multiple fibronectin type III (Fn3) domains in the extracellular region and a single cytoplasmic phosphatase domain. Several members have differential promoter usage and alternative splicing to create isoforms that contain or lack a signal peptide:

  • Human PTPRH has two isoforms, each with a unique promoter and first exon. XP_011525485.1 encodes an isoform with a signal peptide, and XP_016882549.1 is a slightly longer N-terminus that lacks a signal peptide.
  • Human PTPRQ has a shorter isoform with a signal peptide (NP_001138498.1) and a longer form with an additional two FN3 domains, but no signal peptide (XP_016874763.1). These have been seen to be differentially localized in cells [2].
  • Human PTPRB has a shorter, signal peptide-containing isoform (XP_011525485.1) and a longer isoform whose N-terminal extension encodes a lectin domain (XP_016882549.1).

Both Drosophila members (Ptp4E, Ptp10D) lack any detectable signal peptide.

Functions

PTPRB from multiple species antagonizes EGFR signaling, in Drosophila tracheal development [3], in C. elegans vulval development [4], and PTPRJ in mammalian cell assays [5], and multiple members dephosphorylate the insulin receptor [6].

Human PTPRB genes have varied functions, and are selectively expressed in different cell types and/or tissues and have different substrates or binding partners. They function in various tissues, such as nervous system and immune system. They are also putative tumor suppressors. They share common features, including localization at cell-cell contact sites, and involved in cell proliferation and transformation.

PTPRB (VE-PTP)

PTPRB, a.k.a. vascular endothelial protein tyrosine phosphatase (VE-PTP), is expressed specifically in endothelial cells and regulates the spreading and migration of endothelial cells during angiogenesis [7]. PTPRB binds to vascular E-cadherin (VE-cadherin) through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin. But, the reduction of tyrosine phosphorylation seems independently of its enzymatic activity, since catalytically inactive mutant form of PTPRB had the same effect on VE-cadherin phosphorylation [8]. PTPRB associates with endothelial cell (EC)-selective receptor tyrosine kinase Tie2, which maintains vascular integrity [9, 10, 11, 12]. PTPRB regulates vascular endothelial growth factor receptor 2 activity thereby modulating the VEGF-response during angiogenesis [13].

PTPRB is intrinsically active and its inactivation is dependent on its ligand pleiotrophin (PTN) which is a platelet-derived growth factor-inducible, 18-kDa heparin-binding cytokine that signals diverse phenotypes in normal and deregulated cellular growth and differentiation [14]. PTPRB is glycosylated protein (phosphacan).

PTPRB mutations are observed in cancers. Its mutations are recurrent in angiosarcoma [15]. PTPRB mediates glial tumor cell adhesion by binding to tenascin C [16].

PTPRB interacts with neuronal receptors and promotes neurite outgrowth [17].

PTPRH (SAP-1)

PTPRH was mainly expressed in brain and liver and at a lower level in heart and stomach as a 4.2-kilobase mRNA, but it was not detected in pancreas or colon. In contrast, among cancer cell lines tested, PTPRH was highly expressed in pancreatic and colorectal cancer cells [18]. It is downregulated in advanced human hepatocellular carcinoma [19].

PTPRH induces apoptotic cell death and inhibit cell growth and motility. PTPRH inhibits integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. It dephosphorylates p130cas/BCAR1, a major focal adhesion (FA)-associated component of the integrin signaling pathway [20]. Forced expression of recombinant PTPRH results in the dephosphorylation of several additional FA-associated proteins, including focal adhesion kinase (FAK) and Dok-1 as well as in impairment of reorganization of the actin-based cytoskeleton [20]. Overexpression of PTPRH also results in the inactivation of both Akt (protein kinase B) and integrin-linked kinase (ILK) [21].

Besides, PTPRH binds to and dephosphorylates kinase Lck therefore regulating T cell function [22].

PTPRJ (CD148/DEP1/RPTP eta)

PTPRJ is a tumor suppressor implicated in a range of cancers [23, 24, 25, 26, 27, 28, 29, 30, 31]. However, PTPRJ also mediates the invasive cell program implicating Src activation and the promotion of breast cancer progression [32].

It plays a prominent role in negative regulation of growth factor signals, suppressing cell proliferation and transformation [33]. Thus, PTPRJ is involved in many cellular processes and human diseases. In particular, it is involved in the regulation of human T cell activation [34]. PTPRJ/DEP1 is a putative negative regulator of insulin signaling [35]. PTPRJ is expressed in several cell types [36, 37].

PTPRJ has ligands:

  • Thrombospondin-1 [37], an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. It is a natural inhibitor of neovascularization and tumorigenesis in healthy tissue.
  • Syndecan-2 [38], a heparan sulfate proteoglycan participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins.

PTPRJ dephosphorylates growth factor receptors as well as other substrates:

  • EGFR, a subfamily of receptor tyrosine kinases (RTKs). PTPRJ dephosphorylates and thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface [5].
  • VEGFR2, a member of VEGFR subfamily (not EGFR subfamily), receptor tyrosine kinase family [39].
  • Insulin receptor (IR). PTPRJ preferentially dephosphorylated a particular phosphorylation site of the IR: Y960 in the juxtamembrane region and Y1146 in the activation loop [6].
  • RET proto-oncogene, a receptor tyrosine kinase (RTK), gain of which causes various types of cancers [40].
  • CD135/FLT3, a receptor tyrosine kinase (RTK) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. PTPRJ negatively regulates FLT3 phosphorylation and signaling [31, 41]. The activity can be turned off through oxidation of the DEP-1 catalytic cysteine [42].
  • platelet-derived growth factor beta, a receptor tyrosine kinase (RTK) [43, 44].
  • Met proto-oncogene (aka hepatocyte growth factor receptor (HGFR)), a receptor tyrosine kinase (RTK). PTPRJ preferentially dephosphorylated a Gab1 binding site (Tyr(1349)) and a COOH-terminal tyrosine implicated in morphogenesis (Tyr(1365)), whereas tyrosine residues in the activation loop of Met (Tyr(1230), Tyr(1234), and Tyr(1235)) were not preferred targets of the PTP [45].
  • c-Src, a tyrosine kinase (TK). PTPRJ dephosphorylates c-Src inhibitory tyrosine phosphorylation site (Tyr 529) [46] PTPN22 can reduce the level of phosphorylation of c-Src as well, but it is unclear whether they work on the same residue [47, 48].
  • ERK1 and ERK2. Eextracellular signal-regulated kinase (ERKs) belong to Mitogen-Activated Protein Kinase (MAPK) family. They act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. PTPRJ specifically dephosphorylated tyrosine 204 of ERK1/2. [49].
  • p85 regulatory subunit of phosphoinositide 3-kinase (PI3K) [50]
  • Occludin, an integral plasma-membrane protein which is the main component of the tight junctions [51].
  • ZO1, a protein located on a cytoplasmic membrane surface of intercellular tight junctions [52].
  • CTNND1/p120 catenin, a member of the Armadillo protein family, which function in adhesion between cells and signal transduction [53].
  • PTPRJ can reduce phospholipase Cgamma1 (PLCG1) and LAT phosphorylation and inhibit T-cell receptor signal transduction [54].. But, it is unclear whether they are PTPRJ's physiological substrates. In fact, PTPRC/CD45 also reduces PLCG1 phosphorylation.

PTPRJ has functions independent of its phosphatase activity.

PTPRJ has a putative shorter spliced variant (denoted as sPTPRJ), coding for a 539 aa protein corresponding to the extracellular N-terminus. It is a soluble protein secreted into the supernatant of both endothelial and tumor cells. Like PTPRJ, sPTPRJ undergoes post-translational modifications such as glycosylation, as assessed by sPTPRJ immunoprecipitation [55].

PTPRO (GLEPP1/PTP phi)

PTPRO is a tumor suppressor and frequently methylated in various types of cancers [56, 57, 58, 59, 60, 61]. PTPRO can be reliably detected in peripheral blood samples, and is a potential biomarker in cancer diagnosis and prognosis. PTPRO has multiple isoforms. Monoclonal and polyclonal antibodies raised against a human PTPRO fusion protein recognized a protein with distribution restricted to the glomerulus in human kidney [62]. Interestingly, dimerization of PTPRO inhibit its activity, as dimerization of a related RPTP, CD148/PTPRJ, increases activity [63].

PTPRO dephosphorylates kinases SYK at BCR-triggered tyrosyl phosphorylation [64], ZAP70 (SYK family kinase) [65], Lyn (Src family kinase)[65], TrkC (Trk family kinase) [63], and ErbB2 (EGFR family kinase) [66]. PTPRO also dephosphorylates paxillin [67, 68] and VCP/p97 [61].

PTPRO interacts with Toll-like receptor 4 (TLR4) a gene plays diverse roles in HCC tumorigenesis and progression [69]. PTPRO dephosphorylates and inactivates the oncogenic fusion protein BCR/ABL [70].

In human and mouse models of hepatic ischemia reperfusion (IR) injury, PTPRO activates NF-κB in a positive feedback manner. PTPRO level was decreased in the early phase but reversed in the late phase. In vitro studies demonstrated that NF-κB up-regulated PTPRO transcription. PTPRO deficiency in mouse resulted in reduction of NF-κB activation in both hepatocytes and macrophages and was correlated to c-Src phosphorylation; PTPRO in hepatocytes alleviated, but PTPROt in macrophages exacerbated IR injury [71].

PTPRO regulates the growth of specific B-cell subpopulations by promoting G0/G1 arrest [72]. PTPRO mutations can cause autosomal-recessive nephrotic syndrome [73].

PTPRQ

PTPRQ is a phosphatidylinositol phosphatase rather than protein tyrosine phosphatase as all the other members in PTP family. PTPRQ has low phosphatase activity against tyrosine-phosphorylated peptide and protein substrates but can dephosphorylate a broad range of phosphatidylinositol phosphates, including phosphatidylinositol 3,4,5-trisphosphate and most phosphatidylinositol monophosphates and diphosphates, with a preference for PI(3,4,5)P3 [74]. This shift in activity correlates with a change of the WPD tyrosine-specific motif to WPE. Overexpression of PTPRQ in cultured cells inhibits proliferation and induces apoptosis. An E2171D mutation that retains or increases tyrosine phosphatase activity but eliminates phosphatidylinositol phosphatase activity, eliminates the inhibitory effects on proliferation and apoptosis.

Mutations in PTPRQ can cause hearing impairment (DFNB84), including one missense mutation in an FN3 domain and a nonsense mutation early in the extracellular region [75, 76].

PTPRQ has also been shown to involved in differentiation during adipogenesis of human mesenchymal stem cells [77] and regulation the adhesion and migration of mesangial cells in response to injury [78].

PTPRQ is seen in all vertebrates, and a likely ortholog (XP_002123247.3) also exists in Ciona intestinalis.

References

  1. Chicote JU, DeSalle R, and García-España A. Phosphotyrosine phosphatase R3 receptors: Origin, evolution and structural diversification. PLoS One. 2017;12(3):e0172887. DOI:10.1371/journal.pone.0172887 | PubMed ID:28257417 | HubMed [Chicote]
  2. Seifert RA, Coats SA, Oganesian A, Wright MB, Dishmon M, Booth CJ, Johnson RJ, Alpers CE, and Bowen-Pope DF. PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res. 2003 Jul 15;287(2):374-86. DOI:10.1016/s0014-4827(03)00121-6 | PubMed ID:12837292 | HubMed [Seifert03]
  3. Jeon M and Zinn K. Receptor tyrosine phosphatases control tracheal tube geometries through negative regulation of Egfr signaling. Development. 2009 Sep;136(18):3121-9. DOI:10.1242/dev.033597 | PubMed ID:19675131 | HubMed [Jeon]
  4. Berset TA, Hoier EF, and Hajnal A. The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes Dev. 2005 Jun 1;19(11):1328-40. DOI:10.1101/gad.333505 | PubMed ID:15901674 | HubMed [Berset05]
  5. Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F, Nathanson D, Takahashi T, Mischel PS, Ng T, and Yarden Y. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol. 2009 Nov 17;19(21):1788-98. DOI:10.1016/j.cub.2009.09.048 | PubMed ID:19836242 | HubMed [Tarcic09]
  6. Shintani T, Higashi S, Takeuchi Y, Gaudio E, Trapasso F, Fusco A, and Noda M. The R3 receptor-like protein tyrosine phosphatase subfamily inhibits insulin signalling by dephosphorylating the insulin receptor at specific sites. J Biochem. 2015 Sep;158(3):235-43. DOI:10.1093/jb/mvv045 | PubMed ID:26063811 | HubMed [Shintani15]
  7. Mori M, Murata Y, Kotani T, Kusakari S, Ohnishi H, Saito Y, Okazawa H, Ishizuka T, Mori M, and Matozaki T. Promotion of cell spreading and migration by vascular endothelial-protein tyrosine phosphatase (VE-PTP) in cooperation with integrins. J Cell Physiol. 2010 Jul;224(1):195-204. DOI:10.1002/jcp.22122 | PubMed ID:20301196 | HubMed [Mori10]
  8. Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, and Vestweber D. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 2002 Sep 16;21(18):4885-95. DOI:10.1093/emboj/cdf497 | PubMed ID:12234928 | HubMed [Nawroth02]
  9. Fachinger G, Deutsch U, and Risau W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene. 1999 Oct 21;18(43):5948-53. DOI:10.1038/sj.onc.1202992 | PubMed ID:10557082 | HubMed [Fachinger99]
  10. Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF, and Vestweber D. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol. 2009 May 18;185(4):657-71. DOI:10.1083/jcb.200811159 | PubMed ID:19451274 | HubMed [Winderlich09]
  11. Yacyshyn OK, Lai PF, Forse K, Teichert-Kuliszewska K, Jurasz P, and Stewart DJ. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis. 2009;12(1):25-33. DOI:10.1007/s10456-008-9126-0 | PubMed ID:19116766 | HubMed [Yacyshyn09]
  12. Shen J, Frye M, Lee BL, Reinardy JL, McClung JM, Ding K, Kojima M, Xia H, Seidel C, Lima e Silva R, Dong A, Hackett SF, Wang J, Howard BW, Vestweber D, Kontos CD, Peters KG, and Campochiaro PA. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014 Oct;124(10):4564-76. DOI:10.1172/JCI74527 | PubMed ID:25180601 | HubMed [Shen14]
  13. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, Westholm JO, Larsson E, Lindahl P, Cross MJ, and Claesson-Welsh L. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 2009 May;23(5):1490-502. DOI:10.1096/fj.08-123810 | PubMed ID:19136612 | HubMed [Mellberg09]
  14. Meng K, Rodriguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M, and Deuel TF. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2603-8. DOI:10.1073/pnas.020487997 | PubMed ID:10706604 | HubMed [Meng00]
  15. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke SL, Pillay N, Vollan HKM, Papaemmanuil E, Koss H, Bunney TD, Hardy C, Joseph OR, Martin S, Mudie L, Butler A, Teague JW, Patil M, Steers G, Cao Y, Gumbs C, Ingram D, Lazar AJ, Little L, Mahadeshwar H, Protopopov A, Al Sannaa GA, Seth S, Song X, Tang J, Zhang J, Ravi V, Torres KE, Khatri B, Halai D, Roxanis I, Baumhoer D, Tirabosco R, Amary MF, Boshoff C, McDermott U, Katan M, Stratton MR, Futreal PA, Flanagan AM, Harris A, and Campbell PJ. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014 Apr;46(4):376-379. DOI:10.1038/ng.2921 | PubMed ID:24633157 | HubMed [Behjati14]
  16. Adamsky K, Schilling J, Garwood J, Faissner A, and Peles E. Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene. 2001 Feb 1;20(5):609-18. DOI:10.1038/sj.onc.1204119 | PubMed ID:11313993 | HubMed [Adamsky01]
  17. Garwood J, Heck N, Reichardt F, and Faissner A. Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem. 2003 Jun 27;278(26):24164-73. DOI:10.1074/jbc.M211721200 | PubMed ID:12700241 | HubMed [Garwood03]
  18. Matozaki T, Suzuki T, Uchida T, Inazawa J, Ariyama T, Matsuda K, Horita K, Noguchi H, Mizuno H, and Sakamoto C. Molecular cloning of a human transmembrane-type protein tyrosine phosphatase and its expression in gastrointestinal cancers. J Biol Chem. 1994 Jan 21;269(3):2075-81. PubMed ID:8294459 | HubMed [Matozaki94]
  19. Nagano H, Noguchi T, Inagaki K, Yoon S, Matozaki T, Itoh H, Kasuga M, and Hayashi Y. Downregulation of stomach cancer-associated protein tyrosine phosphatase-1 (SAP-1) in advanced human hepatocellular carcinoma. Oncogene. 2003 Jul 24;22(30):4656-63. DOI:10.1038/sj.onc.1206588 | PubMed ID:12879010 | HubMed [Nagano03]
  20. Noguchi T, Tsuda M, Takeda H, Takada T, Inagaki K, Yamao T, Fukunaga K, Matozaki T, and Kasuga M. Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas. J Biol Chem. 2001 May 4;276(18):15216-24. DOI:10.1074/jbc.M007208200 | PubMed ID:11278335 | HubMed [Noguchi01]
  21. Takada T, Noguchi T, Inagaki K, Hosooka T, Fukunaga K, Yamao T, Ogawa W, Matozaki T, and Kasuga M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J Biol Chem. 2002 Sep 13;277(37):34359-66. DOI:10.1074/jbc.M206541200 | PubMed ID:12101188 | HubMed [Takada02]
  22. Ito T, Okazawa H, Maruyama K, Tomizawa K, Motegi S, Ohnishi H, Kuwano H, Kosugi A, and Matozaki T. Interaction of SAP-1, a transmembrane-type protein-tyrosine phosphatase, with the tyrosine kinase Lck. Roles in regulation of T cell function. J Biol Chem. 2003 Sep 12;278(37):34854-63. DOI:10.1074/jbc.M300648200 | PubMed ID:12837766 | HubMed [Ito03]
  23. Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, Pirani P, Corsaro A, Iuliano R, Fusco A, Zona G, Spaziante R, Florio T, and Schettini G. The expression of the phosphotyrosine phosphatase DEP-1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem. 2004 Jul 9;279(28):29004-12. DOI:10.1074/jbc.M403573200 | PubMed ID:15123617 | HubMed [Massa04]
  24. Trapasso F, Yendamuri S, Dumon KR, Iuliano R, Cesari R, Feig B, Seto R, Infante L, Ishii H, Vecchione A, During MJ, Croce CM, and Fusco A. Restoration of receptor-type protein tyrosine phosphatase eta function inhibits human pancreatic carcinoma cell growth in vitro and in vivo. Carcinogenesis. 2004 Nov;25(11):2107-14. DOI:10.1093/carcin/bgh224 | PubMed ID:15231692 | HubMed [Trapasso04]
  25. Iuliano R, Le Pera I, Cristofaro C, Baudi F, Arturi F, Pallante P, Martelli ML, Trapasso F, Chiariotti L, and Fusco A. The tyrosine phosphatase PTPRJ/DEP-1 genotype affects thyroid carcinogenesis. Oncogene. 2004 Nov 4;23(52):8432-8. DOI:10.1038/sj.onc.1207766 | PubMed ID:15378013 | HubMed [Iuliano04]
  26. Balavenkatraman KK, Jandt E, Friedrich K, Kautenburger T, Pool-Zobel BL, Ostman A, and Böhmer FD. DEP-1 protein tyrosine phosphatase inhibits proliferation and migration of colon carcinoma cells and is upregulated by protective nutrients. Oncogene. 2006 Oct 12;25(47):6319-24. DOI:10.1038/sj.onc.1209647 | PubMed ID:16682945 | HubMed [Balavenkatraman06]
  27. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Görgens H, Hahn MM, Kamping EJ, Vreede L, Hoenselaar E, van der Looij E, Goossens M, Churchman M, Carvajal-Carmona L, Tomlinson IP, de Bruijn DR, Van Kessel AG, and Kuiper RP. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology. 2010 Dec;139(6):2221-4. DOI:10.1053/j.gastro.2010.08.063 | PubMed ID:21036128 | HubMed [Venkatachalam10]
  28. Omerovic J, Clague MJ, and Prior IA. Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells. Biochem J. 2010 Jan 27;426(1):65-72. DOI:10.1042/BJ20091413 | PubMed ID:19922411 | HubMed [Omerovic10]
  29. Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P, Lea R, Gandhi MK, and Griffiths LR. High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin's lymphoma. Genes Chromosomes Cancer. 2013 May;52(5):467-79. DOI:10.1002/gcc.22044 | PubMed ID:23341091 | HubMed [AyaBonilla13]
  30. Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M, Mawrin C, and Böhmer FD. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol. 2011 Jul;21(4):405-18. DOI:10.1111/j.1750-3639.2010.00464.x | PubMed ID:21091576 | HubMed [Petermann11]
  31. Arora D, Stopp S, Böhmer SA, Schons J, Godfrey R, Masson K, Razumovskaya E, Rönnstrand L, Tänzer S, Bauer R, Böhmer FD, and Müller JP. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem. 2011 Apr 1;286(13):10918-29. DOI:10.1074/jbc.M110.205021 | PubMed ID:21262971 | HubMed [Arora11]
  32. Spring K, Fournier P, Lapointe L, Chabot C, Roussy J, Pommey S, Stagg J, and Royal I. The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene. 2015 Oct 29;34(44):5536-47. DOI:10.1038/onc.2015.9 | PubMed ID:25772245 | HubMed [Spring15]
  33. Smart CE, Askarian Amiri ME, Wronski A, Dinger ME, Crawford J, Ovchinnikov DA, Vargas AC, Reid L, Simpson PT, Song S, Wiesner C, French JD, Dave RK, da Silva L, Purdon A, Andrew M, Mattick JS, Lakhani SR, Brown MA, and Kellie S. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. PLoS One. 2012;7(7):e40742. DOI:10.1371/journal.pone.0040742 | PubMed ID:22815804 | HubMed [Smart12]
  34. Tangye SG, Phillips JH, Lanier LL, de Vries JE, and Aversa G. CD148: a receptor-type protein tyrosine phosphatase involved in the regulation of human T cell activation. J Immunol. 1998 Oct 1;161(7):3249-55. PubMed ID:9759839 | HubMed [Tangye98]
  35. Krüger J, Brachs S, Trappiel M, Kintscher U, Meyborg H, Wellnhofer E, Thöne-Reineke C, Stawowy P, Östman A, Birkenfeld AL, Böhmer FD, and Kappert K. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice. Mol Metab. 2015 Apr;4(4):325-36. DOI:10.1016/j.molmet.2015.02.001 | PubMed ID:25830095 | HubMed [Kruger15]
  36. Autschbach F, Palou E, Mechtersheimer G, Rohr C, Pirotto F, Gassler N, Otto HF, Schraven B, and Gaya A. Expression of the membrane protein tyrosine phosphatase CD148 in human tissues. Tissue Antigens. 1999 Nov;54(5):485-98. PubMed ID:10599888 | HubMed [Autschbach99]
  37. Takahashi K, Mernaugh RL, Friedman DB, Weller R, Tsuboi N, Yamashita H, Quaranta V, and Takahashi T. Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1985-90. DOI:10.1073/pnas.1106171109 | PubMed ID:22308318 | HubMed [Takahashi12]
  38. Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, and Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell. 2011 Oct;22(19):3609-24. DOI:10.1091/mbc.E11-02-0099 | PubMed ID:21813734 | HubMed [Whiteford11]
  39. Chabot C, Spring K, Gratton JP, Elchebly M, and Royal I. New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol. 2009 Jan;29(1):241-53. DOI:10.1128/MCB.01374-08 | PubMed ID:18936167 | HubMed [Chabot09]
  40. Iervolino A, Iuliano R, Trapasso F, Viglietto G, Melillo RM, Carlomagno F, Santoro M, and Fusco A. The receptor-type protein tyrosine phosphatase J antagonizes the biochemical and biological effects of RET-derived oncoproteins. Cancer Res. 2006 Jun 15;66(12):6280-7. DOI:10.1158/0008-5472.CAN-06-0228 | PubMed ID:16778204 | HubMed [Iervolino06]
  41. Böhmer SA, Weibrecht I, Söderberg O, and Böhmer FD. Association of the protein-tyrosine phosphatase DEP-1 with its substrate FLT3 visualized by in situ proximity ligation assay. PLoS One. 2013;8(5):e62871. DOI:10.1371/journal.pone.0062871 | PubMed ID:23650535 | HubMed [Bohmer13]
  42. Godfrey R, Arora D, Bauer R, Stopp S, Müller JP, Heinrich T, Böhmer SA, Dagnell M, Schnetzke U, Scholl S, Östman A, and Böhmer FD. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ. Blood. 2012 May 10;119(19):4499-511. DOI:10.1182/blood-2011-02-336446 | PubMed ID:22438257 | HubMed [Godfrey12]
  43. Kovalenko M, Denner K, Sandström J, Persson C, Gross S, Jandt E, Vilella R, Böhmer F, and Ostman A. Site-selective dephosphorylation of the platelet-derived growth factor beta-receptor by the receptor-like protein-tyrosine phosphatase DEP-1. J Biol Chem. 2000 May 26;275(21):16219-26. DOI:10.1074/jbc.275.21.16219 | PubMed ID:10821867 | HubMed [Kovalenko00]
  44. Persson C, Engström U, Mowbray SL, and Ostman A. Primary sequence determinants responsible for site-selective dephosphorylation of the PDGF beta-receptor by the receptor-like protein tyrosine phosphatase DEP-1. FEBS Lett. 2002 Apr 24;517(1-3):27-31. DOI:10.1016/s0014-5793(02)02570-x | PubMed ID:12062403 | HubMed [Persson02]
  45. Palka HL, Park M, and Tonks NK. Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. J Biol Chem. 2003 Feb 21;278(8):5728-35. DOI:10.1074/jbc.M210656200 | PubMed ID:12475979 | HubMed [Palka03]
  46. Pera IL, Iuliano R, Florio T, Susini C, Trapasso F, Santoro M, Chiariotti L, Schettini G, Viglietto G, and Fusco A. The rat tyrosine phosphatase eta increases cell adhesion by activating c-Src through dephosphorylation of its inhibitory phosphotyrosine residue. Oncogene. 2005 Apr 28;24(19):3187-95. DOI:10.1038/sj.onc.1208510 | PubMed ID:15735685 | HubMed [Pera05]
  47. Fiorillo E, Orrú V, Stanford SM, Liu Y, Salek M, Rapini N, Schenone AD, Saccucci P, Delogu LG, Angelini F, Manca Bitti ML, Schmedt C, Chan AC, Acuto O, and Bottini N. Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J Biol Chem. 2010 Aug 20;285(34):26506-18. DOI:10.1074/jbc.M110.111104 | PubMed ID:20538612 | HubMed [Fiorillo04]
  48. Stepanek O, Kalina T, Draber P, Skopcova T, Svojgr K, Angelisova P, Horejsi V, Weiss A, and Brdicka T. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148. J Biol Chem. 2011 Jun 24;286(25):22101-12. DOI:10.1074/jbc.M110.196733 | PubMed ID:21543337 | HubMed [Stepanek11]
  49. Sacco F, Tinti M, Palma A, Ferrari E, Nardozza AP, Hooft van Huijsduijnen R, Takahashi T, Castagnoli L, and Cesareni G. Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. J Biol Chem. 2009 Aug 14;284(33):22048-58. DOI:10.1074/jbc.M109.002758 | PubMed ID:19494114 | HubMed [Sacco09]
  50. Tsuboi N, Utsunomiya T, Roberts RL, Ito H, Takahashi K, Noda M, and Takahashi T. The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J. 2008 Jul 1;413(1):193-200. DOI:10.1042/BJ20071317 | PubMed ID:18348712 | HubMed [Tsuboi08]
  51. Iuliano R, Raso C, Quintiero A, Pera IL, Pichiorri F, Palumbo T, Palmieri D, Pattarozzi A, Florio T, Viglietto G, Trapasso F, Croce CM, and Fusco A. The eighth fibronectin type III domain of protein tyrosine phosphatase receptor J influences the formation of protein complexes and cell localization. J Biochem. 2009 Mar;145(3):377-85. DOI:10.1093/jb/mvn175 | PubMed ID:19122201 | HubMed [Sallee09]
  52. Holsinger LJ, Ward K, Duffield B, Zachwieja J, and Jallal B. The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene. 2002 Oct 10;21(46):7067-76. DOI:10.1038/sj.onc.1205858 | PubMed ID:12370829 | HubMed [Holsinger02]
  53. Baker JE, Majeti R, Tangye SG, and Weiss A. Protein tyrosine phosphatase CD148-mediated inhibition of T-cell receptor signal transduction is associated with reduced LAT and phospholipase Cgamma1 phosphorylation. Mol Cell Biol. 2001 Apr;21(7):2393-403. DOI:10.1128/MCB.21.7.2393-2403.2001 | PubMed ID:11259588 | HubMed [Baker01]
  54. Bilotta A, Dattilo V, D'Agostino S, Belviso S, Scalise S, Bilotta M, Gaudio E, Paduano F, Perrotti N, Florio T, Fusco A, Iuliano R, and Trapasso F. A novel splice variant of the protein tyrosine phosphatase PTPRJ that encodes for a soluble protein involved in angiogenesis. Oncotarget. 2017 Feb 7;8(6):10091-10102. DOI:10.18632/oncotarget.14350 | PubMed ID:28052032 | HubMed [Bilotta2016]
  55. Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T, Suster S, Morrison C, and Jacob ST. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13844-9. DOI:10.1073/pnas.0405451101 | PubMed ID:15356345 | HubMed [Motiwala04]
  56. Motiwala T, Majumder S, Kutay H, Smith DS, Neuberg DS, Lucas DM, Byrd JC, Grever M, and Jacob ST. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res. 2007 Jun 1;13(11):3174-81. DOI:10.1158/1078-0432.CCR-06-1720 | PubMed ID:17545520 | HubMed [Motiwala07]
  57. Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, and Jacob ST. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol. 2009 Feb;23(2):176-87. DOI:10.1210/me.2008-0211 | PubMed ID:19095770 | HubMed [Ramaswamy09]
  58. You YJ, Chen YP, Zheng XX, Meltzer SJ, and Zhang H. Aberrant methylation of the PTPRO gene in peripheral blood as a potential biomarker in esophageal squamous cell carcinoma patients. Cancer Lett. 2012 Feb 28;315(2):138-44. DOI:10.1016/j.canlet.2011.08.032 | PubMed ID:22099875 | HubMed [You12]
  59. Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF, Zheng XX, Chen YP, and Zhang H. PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med. 2013 Oct 3;11:245. DOI:10.1186/1479-5876-11-245 | PubMed ID:24090193 | HubMed [Huang13]
  60. Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C, Freitas MA, Ghoshal K, and Jacob ST. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem. 2013 Aug;114(8):1810-8. DOI:10.1002/jcb.24525 | PubMed ID:23533167 | HubMed [Hsu13]
  61. Wiggins RC, Wiggins JE, Goyal M, Wharram BL, and Thomas PE. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics. 1995 May 1;27(1):174-81. DOI:10.1006/geno.1995.1021 | PubMed ID:7665166 | HubMed [Wiggins95]
  62. Hower AE, Beltran PJ, and Bixby JL. Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J Neurochem. 2009 Sep;110(5):1635-47. DOI:10.1111/j.1471-4159.2009.06261.x | PubMed ID:19573017 | HubMed [Hower09]
  63. Chen L, Juszczynski P, Takeyama K, Aguiar RC, and Shipp MA. Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood. 2006 Nov 15;108(10):3428-33. DOI:10.1182/blood-2006-03-013821 | PubMed ID:16888096 | HubMed [Chen06]
  64. Motiwala T, Datta J, Kutay H, Roy S, and Jacob ST. Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem. 2010 Jul 1;110(4):846-56. DOI:10.1002/jcb.22593 | PubMed ID:20564182 | HubMed [Motiwala10]
  65. Yu M, Lin G, Arshadi N, Kalatskaya I, Xue B, Haider S, Nguyen F, Boutros PC, Elson A, Muthuswamy LB, Tonks NK, and Muthuswamy SK. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation. Mol Cell Biol. 2012 Oct;32(19):3913-24. DOI:10.1128/MCB.00068-12 | PubMed ID:22851698 | HubMed [Yu12]
  66. Pixley FJ, Lee PS, Dominguez MG, Einstein DB, and Stanley ER. A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem. 1995 Nov 10;270(45):27339-47. DOI:10.1074/jbc.270.45.27339 | PubMed ID:7592997 | HubMed [Pixley95]
  67. Xu D, Wang X, Yan S, Yin Y, Hou J, Wang X, and Sun B. Interaction of PTPRO and TLR4 signaling in hepatocellular carcinoma. Tumour Biol. 2014 Oct;35(10):10267-73. DOI:10.1007/s13277-014-2302-5 | PubMed ID:25034527 | HubMed [Xu14]
  68. Motiwala T, Majumder S, Ghoshal K, Kutay H, Datta J, Roy S, Lucas DM, and Jacob ST. PTPROt inactivates the oncogenic fusion protein BCR/ABL and suppresses transformation of K562 cells. J Biol Chem. 2009 Jan 2;284(1):455-64. DOI:10.1074/jbc.M802840200 | PubMed ID:18997174 | HubMed [Motiwala09]
  69. Aguiar RC, Yakushijin Y, Kharbanda S, Tiwari S, Freeman GJ, and Shipp MA. PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood. 1999 Oct 1;94(7):2403-13. PubMed ID:10498613 | HubMed [Aguiar99]
  70. Ozaltin F, Ibsirlioglu T, Taskiran EZ, Baydar DE, Kaymaz F, Buyukcelik M, Kilic BD, Balat A, Iatropoulos P, Asan E, Akarsu NA, Schaefer F, Yilmaz E, Bakkaloglu A, and PodoNet Consortium.. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet. 2011 Jul 15;89(1):139-47. DOI:10.1016/j.ajhg.2011.05.026 | PubMed ID:21722858 | HubMed [Ozaltin11]
  71. Yu KR, Kim YJ, Jung SK, Ku B, Park H, Cho SY, Jung H, Chung SJ, Bae KH, Lee SC, Kim BY, Erikson RL, Ryu SE, and Kim SJ. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1522-9. DOI:10.1107/S0907444913010457 | PubMed ID:23897475 | HubMed [Yu13]
  72. Shahin H, Rahil M, Abu Rayan A, Avraham KB, King MC, Kanaan M, and Walsh T. Nonsense mutation of the stereociliar membrane protein gene PTPRQ in human hearing loss DFNB84. J Med Genet. 2010 Sep;47(9):643-5. DOI:10.1136/jmg.2009.075697 | PubMed ID:20472657 | HubMed [Shahin10]
  73. Schraders M, Oostrik J, Huygen PL, Strom TM, van Wijk E, Kunst HP, Hoefsloot LH, Cremers CW, Admiraal RJ, and Kremer H. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet. 2010 Apr 9;86(4):604-10. DOI:10.1016/j.ajhg.2010.02.015 | PubMed ID:20346435 | HubMed [Schraders10]
  74. Jung H, Kim WK, Kim DH, Cho YS, Kim SJ, Park SG, Park BC, Lim HM, Bae KH, and Lee SC. Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 2009 May 29;383(2):252-7. DOI:10.1016/j.bbrc.2009.04.001 | PubMed ID:19351528 | HubMed [Jung09]
  75. Wright MB, Hugo C, Seifert R, Disteche CM, and Bowen-Pope DF. Proliferating and migrating mesangial cells responding to injury express a novel receptor protein-tyrosine phosphatase in experimental mesangial proliferative glomerulonephritis. J Biol Chem. 1998 Sep 11;273(37):23929-37. DOI:10.1074/jbc.273.37.23929 | PubMed ID:9727007 | HubMed [Wright98]
  76. Brunner PM, Heier PC, Mihaly-Bison J, Priglinger U, Binder BR, and Prager GW. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells. Blood. 2011 Apr 14;117(15):4154-61. DOI:10.1182/blood-2010-09-307694 | PubMed ID:21304107 | HubMed [Brunner11]
  77. Pixley FJ, Lee PS, Condeelis JS, and Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol Cell Biol. 2001 Mar;21(5):1795-809. DOI:10.1128/MCB.21.5.1795-1809.2001 | PubMed ID:11238916 | HubMed [Pixley01]
All Medline abstracts: PubMed | HubMed