Difference between revisions of "Pseudophosphatases (obsolete)"
(→References) |
|||
(25 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | __TOC__ | ||
== Human pseudophosphatases == | == Human pseudophosphatases == | ||
=== PTPs === | === PTPs === | ||
− | ==== Second phosphatase | + | ==== Second phosphatase domains of receptor PTPs ==== |
Most receptor PTPs have two tandem phosphatase domains. The 2nd phosphatase domain has no or negligible activity. The 2nd domain can interact with 1st domain in both intra- and intermolecular manners, therefore regulating receptor PTP stability, specificity, and dimerization <cite>denHertog02, Barr09</cite>. Because the first phosphatase domains are active, these receptor PTPs are active at protein level. These phosphatases include: | Most receptor PTPs have two tandem phosphatase domains. The 2nd phosphatase domain has no or negligible activity. The 2nd domain can interact with 1st domain in both intra- and intermolecular manners, therefore regulating receptor PTP stability, specificity, and dimerization <cite>denHertog02, Barr09</cite>. Because the first phosphatase domains are active, these receptor PTPs are active at protein level. These phosphatases include: | ||
* [[Phosphatase_Subfamily_PTPRA|Subfamily PTPRA]]: PTPRA and PTPRE | * [[Phosphatase_Subfamily_PTPRA|Subfamily PTPRA]]: PTPRA and PTPRE | ||
Line 9: | Line 10: | ||
* [[Phosphatase_Subfamily_PTPRG|Subfamily PTPRG]]: PTPRG and PTPRZ1 | * [[Phosphatase_Subfamily_PTPRG|Subfamily PTPRG]]: PTPRG and PTPRZ1 | ||
* [[Phosphatase_Subfamily_PTPRG|Subfamily PTPRK]]: PTPRK, PTPRM, PTPRT and PTPRU | * [[Phosphatase_Subfamily_PTPRG|Subfamily PTPRK]]: PTPRK, PTPRM, PTPRT and PTPRU | ||
+ | |||
+ | ==== PTPRN subfamily ==== | ||
+ | The [[Phosphatase_Subfamily_PTPRN|PTPRN subfamily]] has two members in human, PTPRN and PTPRN2. They have single phosphatase domain rather than two phosphatase domains as the members of PTPRA, PTPRC, PTPRD, PTPRK subfamilies. Their phosphatase domains mediate the interactions between them to form homo- and hetero-dimers <cite> Gross02</cite>. PTPRN2 also functions as a phosphatidylinositol phosphatase to regulate insulin secretion in mouse <cite> Caromile10 </cite>. | ||
+ | |||
+ | ==== PTPN14 subfamily ==== | ||
+ | The [[Phosphatase_Subfamily_PTPN14|PTPN14 subfamily]] has two members in human, PTPN14 and PTPN21. Although PTPN14 and PTPN21 are supposed to lack enzymatic activity, PTPN14 has been shown to dephosphorylate p130Cas on Y128, a Src phosphorylation site <cite>Zhang13</cite>. It is worthy pointing out that the substitutions are found around WPD loop but not CX<sub>5</sub>R motif. | ||
==== PTPN23 subfamily ==== | ==== PTPN23 subfamily ==== | ||
Line 20: | Line 27: | ||
The [[Phosphatase_Subfamily_STYXL1|STYXL1 subfamily]] has a single member in human, STYXL1 (MK-STYX). STYXL1 binds to phosphatase PTPMT1 and modulates its activity <cite> Niemi11, Niemi14</cite>. However, it is unclear whether the interaction between STYXL1 and PTPMT1 is mediated by the inactive phosphatase domain of STYXL1. | The [[Phosphatase_Subfamily_STYXL1|STYXL1 subfamily]] has a single member in human, STYXL1 (MK-STYX). STYXL1 binds to phosphatase PTPMT1 and modulates its activity <cite> Niemi11, Niemi14</cite>. However, it is unclear whether the interaction between STYXL1 and PTPMT1 is mediated by the inactive phosphatase domain of STYXL1. | ||
− | ==== | + | ==== DSP3 subfamily: DUSP27 (1 out 5 members) ==== |
The function of [[Phosphatase_Subfamily_DSP3#DUSP27|DUSP27]] is unknown, so is its catalytically inactive phosphatase domain. | The function of [[Phosphatase_Subfamily_DSP3#DUSP27|DUSP27]] is unknown, so is its catalytically inactive phosphatase domain. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Myotubularins === | === Myotubularins === | ||
==== MTMR5 subfamily ==== | ==== MTMR5 subfamily ==== | ||
+ | The [[Phosphatase_Subfamily_MTMR5|MTMR5 subfamily]] has two genes in human: MTMR5 (SBF1) and MTMR13 (SBF2). MTMR5 interacts with MTMR2 (see [[Phosphatase_Subfamily_MTMR1|MTMR1 subfamily]]) via its coiled-coil domain and mutations in the coiled-coil domain of either MTMR2 or MTMR5 abrogate this interaction. Through this interaction, MTMR5 increases the enzymatic activity of MTMR2 and dictates its subcellular localization <cite>Kim03</cite>. This is a good example of inactive phosphatase functions as regulator of active phosphatase. The function of MTMR13 is unclear. | ||
+ | |||
+ | ==== MTMR9 subfamily ==== | ||
+ | The [[Phosphatase_Subfamily_MTMR9|MTMR9 subfamily]] has a single gene in human. MTMR9 binds to phosphatases of MTMR6 subfamily: MTMR6 <cite>zou09</cite>, MTMR7 <cite>Mochizuki03</cite>, MTMR8 <cite>zou12</cite>. The interactions increase the enzymatic activity of these phosphatases. The interaction between MTMR9 and members of MTMR6 subfamily is also observed in ''C. elegans'' <cite>marie10</cite>. | ||
==== MTMR10 subfamily ==== | ==== MTMR10 subfamily ==== | ||
The [[Phosphatase_Subfamily_MTMR10|MTMR10 subfamily]] has three genes in human: MTMR10, MTMR11 and MTMR12. The functions of MTMR10 and MTMR11 are unclear. MTMR12 binds to MTM1 <cite> Nandurkar03</cite>. | The [[Phosphatase_Subfamily_MTMR10|MTMR10 subfamily]] has three genes in human: MTMR10, MTMR11 and MTMR12. The functions of MTMR10 and MTMR11 are unclear. MTMR12 binds to MTM1 <cite> Nandurkar03</cite>. | ||
+ | |||
+ | === Other families === | ||
+ | ==== TIM50 subfamily of HAD family ==== | ||
+ | The [[Phosphatase_Subfamily_TIM50|TIM50 subfamily]] has single member in human, TIMM50. It lacks the residues critical to its activity from yeast to human. However, TIMM50 has been show to possess a phosphatase activity toward both phospho-serine/threonine and phospho-tyrosine in vitro assay <cite>Guo04</cite>. | ||
+ | |||
+ | ==== PPIP5K subfamily of HP2 family ==== | ||
+ | The [[Phosphatase_Subfamily_ PPIP5K | PPIP5K subfamily]] has two members in human, PPIP5K1 and PPIP5K2. Their phosphatase domains bind to polyphosphoinositide<cite> Gokhale11 </cite>). | ||
+ | |||
+ | ==== TAB1 subfamily of PPM family ==== | ||
+ | The [[Phosphatase_Subfamily_TAB1|TAB1 subfamily]] has single member in human, TAB1. The phosphatase domain binds to X-linked inhib- itor of apoptosis (XIAP) <cite>Lu07</cite>. | ||
== References == | == References == | ||
Line 41: | Line 56: | ||
#denHertog02 pmid=12376545 | #denHertog02 pmid=12376545 | ||
#Gingras09 pmid=19340315 | #Gingras09 pmid=19340315 | ||
− | # | + | #Gokhale11 pmid=21222653 |
+ | #Gross02 pmid=12364328 | ||
+ | #Guo04 pmid=15044455 | ||
#Kharitidi13 pmid=24064037 | #Kharitidi13 pmid=24064037 | ||
− | # | + | #Kim03 pmid=12668758 |
#Lin11 pmid=21724833 | #Lin11 pmid=21724833 | ||
+ | #Lu07 pmid=17560374 | ||
+ | #marie10 pmid=21076391 | ||
#Mariotti09 pmid=18762272 | #Mariotti09 pmid=18762272 | ||
+ | #Mochizuki03 pmid=12890864 | ||
#Nandurkar03 pmid=12847286 | #Nandurkar03 pmid=12847286 | ||
#Niemi11 pmid=21262771 | #Niemi11 pmid=21262771 | ||
Line 51: | Line 71: | ||
#Reiterer13 pmid=23847209 | #Reiterer13 pmid=23847209 | ||
#Wishart98 pmid=9757831 | #Wishart98 pmid=9757831 | ||
+ | #Zhang13 pmid=22710723 | ||
+ | #zou09 pmid=19038970 | ||
+ | #zou12 pmid=22647598 | ||
</biblio> | </biblio> |
Latest revision as of 00:36, 14 April 2017
Contents
[hide]Human pseudophosphatases
PTPs
Second phosphatase domains of receptor PTPs
Most receptor PTPs have two tandem phosphatase domains. The 2nd phosphatase domain has no or negligible activity. The 2nd domain can interact with 1st domain in both intra- and intermolecular manners, therefore regulating receptor PTP stability, specificity, and dimerization [1, 2]. Because the first phosphatase domains are active, these receptor PTPs are active at protein level. These phosphatases include:
- Subfamily PTPRA: PTPRA and PTPRE
- Subfamily PTPRC: PTPRC
- Subfamily PTPRD: PTPRD, PTPRF and PTPRS
- Subfamily PTPRG: PTPRG and PTPRZ1
- Subfamily PTPRK: PTPRK, PTPRM, PTPRT and PTPRU
PTPRN subfamily
The PTPRN subfamily has two members in human, PTPRN and PTPRN2. They have single phosphatase domain rather than two phosphatase domains as the members of PTPRA, PTPRC, PTPRD, PTPRK subfamilies. Their phosphatase domains mediate the interactions between them to form homo- and hetero-dimers [3]. PTPRN2 also functions as a phosphatidylinositol phosphatase to regulate insulin secretion in mouse [4].
PTPN14 subfamily
The PTPN14 subfamily has two members in human, PTPN14 and PTPN21. Although PTPN14 and PTPN21 are supposed to lack enzymatic activity, PTPN14 has been shown to dephosphorylate p130Cas on Y128, a Src phosphorylation site [5]. It is worthy pointing out that the substitutions are found around WPD loop but not CX5R motif.
PTPN23 subfamily
The PTPN23 subfamily has a single member in human, PTPN23 (HD-PTP). Its catalytic activity is plausible. It has been reported to be catalytically inactive, - no phosphatase activity toward tyrosine or lipid. It was proposed that serine at position 1452 within Cx5R catalytic motif caused the inactivity. Replacing serine with alanine, which is found in catalytically active PTPs, can restore the phosphatase activity [6]. However, another study found SRC, E-cadherin, and beta-catenin are direct substrates of PTPN23 [7]. But, yet another study showed that PTPN23 did not modulate the levels of Src phosphorylation both in vitro and in vivo [8].
DSPs
STYX subfamily
The STYX subfamily has a single member in human, STYX. It binds to phosphorylated tyrosine to module signaling [9]. STYX localizes to the nucleus, competes with DUSP4 for binding to ERK, and acts as a nuclear anchor that regulates ERK nuclear export [10].
STYXL1 subfamily
The STYXL1 subfamily has a single member in human, STYXL1 (MK-STYX). STYXL1 binds to phosphatase PTPMT1 and modulates its activity [11, 12]. However, it is unclear whether the interaction between STYXL1 and PTPMT1 is mediated by the inactive phosphatase domain of STYXL1.
DSP3 subfamily: DUSP27 (1 out 5 members)
The function of DUSP27 is unknown, so is its catalytically inactive phosphatase domain.
Myotubularins
MTMR5 subfamily
The MTMR5 subfamily has two genes in human: MTMR5 (SBF1) and MTMR13 (SBF2). MTMR5 interacts with MTMR2 (see MTMR1 subfamily) via its coiled-coil domain and mutations in the coiled-coil domain of either MTMR2 or MTMR5 abrogate this interaction. Through this interaction, MTMR5 increases the enzymatic activity of MTMR2 and dictates its subcellular localization [13]. This is a good example of inactive phosphatase functions as regulator of active phosphatase. The function of MTMR13 is unclear.
MTMR9 subfamily
The MTMR9 subfamily has a single gene in human. MTMR9 binds to phosphatases of MTMR6 subfamily: MTMR6 [14], MTMR7 [15], MTMR8 [16]. The interactions increase the enzymatic activity of these phosphatases. The interaction between MTMR9 and members of MTMR6 subfamily is also observed in C. elegans [17].
MTMR10 subfamily
The MTMR10 subfamily has three genes in human: MTMR10, MTMR11 and MTMR12. The functions of MTMR10 and MTMR11 are unclear. MTMR12 binds to MTM1 [18].
Other families
TIM50 subfamily of HAD family
The TIM50 subfamily has single member in human, TIMM50. It lacks the residues critical to its activity from yeast to human. However, TIMM50 has been show to possess a phosphatase activity toward both phospho-serine/threonine and phospho-tyrosine in vitro assay [19].
PPIP5K subfamily of HP2 family
The PPIP5K subfamily has two members in human, PPIP5K1 and PPIP5K2. Their phosphatase domains bind to polyphosphoinositide[20]).
TAB1 subfamily of PPM family
The TAB1 subfamily has single member in human, TAB1. The phosphatase domain binds to X-linked inhib- itor of apoptosis (XIAP) [21].
References
- Blanchetot C, Tertoolen LG, Overvoorde J, and den Hertog J. Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. J Biol Chem. 2002 Dec 6;277(49):47263-9. DOI:10.1074/jbc.M205810200 |
- Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S, and Knapp S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 2009 Jan 23;136(2):352-63. DOI:10.1016/j.cell.2008.11.038 |
- Gross S, Blanchetot C, Schepens J, Albet S, Lammers R, den Hertog J, and Hendriks W. Multimerization of the protein-tyrosine phosphatase (PTP)-like insulin-dependent diabetes mellitus autoantigens IA-2 and IA-2beta with receptor PTPs (RPTPs). Inhibition of RPTPalpha enzymatic activity. J Biol Chem. 2002 Dec 13;277(50):48139-45. DOI:10.1074/jbc.M208228200 |
- Caromile LA, Oganesian A, Coats SA, Seifert RA, and Bowen-Pope DF. The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion. J Biol Chem. 2010 Apr 2;285(14):10487-96. DOI:10.1074/jbc.M109.066563 |
- Zhang P, Guo A, Possemato A, Wang C, Beard L, Carlin C, Markowitz SD, Polakiewicz RD, and Wang Z. Identification and functional characterization of p130Cas as a substrate of protein tyrosine phosphatase nonreceptor 14. Oncogene. 2013 Apr 18;32(16):2087-95. DOI:10.1038/onc.2012.220 |
- Gingras MC, Zhang YL, Kharitidi D, Barr AJ, Knapp S, Tremblay ML, and Pause A. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS One. 2009;4(4):e5105. DOI:10.1371/journal.pone.0005105 |
- Lin G, Aranda V, Muthuswamy SK, and Tonks NK. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the 'PTP-ome'. Genes Dev. 2011 Jul 1;25(13):1412-25. DOI:10.1101/gad.2018911 |
- Mariotti M, Castiglioni S, Garcia-Manteiga JM, Beguinot L, and Maier JA. HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol. 2009 Mar;41(3):687-93. DOI:10.1016/j.biocel.2008.08.005 |
- Wishart MJ and Dixon JE. Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci. 1998 Aug;23(8):301-6. DOI:10.1016/s0968-0004(98)01241-9 |
- Reiterer V, Fey D, Kolch W, Kholodenko BN, and Farhan H. Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):E2934-43. DOI:10.1073/pnas.1301985110 |
- Niemi NM, Lanning NJ, Klomp JA, Tait SW, Xu Y, Dykema KJ, Murphy LO, Gaither LA, Xu HE, Furge KA, Green DR, and MacKeigan JP. MK-STYX, a catalytically inactive phosphatase regulating mitochondrially dependent apoptosis. Mol Cell Biol. 2011 Apr;31(7):1357-68. DOI:10.1128/MCB.00788-10 |
- Niemi NM, Sacoman JL, Westrate LM, Gaither LA, Lanning NJ, Martin KR, and MacKeigan JP. The pseudophosphatase MK-STYX physically and genetically interacts with the mitochondrial phosphatase PTPMT1. PLoS One. 2014;9(4):e93896. DOI:10.1371/journal.pone.0093896 |
- Kim SA, Vacratsis PO, Firestein R, Cleary ML, and Dixon JE. Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4492-7. DOI:10.1073/pnas.0431052100 |
- Zou J, Chang SC, Marjanovic J, and Majerus PW. MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis. J Biol Chem. 2009 Jan 23;284(4):2064-71. DOI:10.1074/jbc.M804292200 |
- Mochizuki Y and Majerus PW. Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9768-73. DOI:10.1073/pnas.1333958100 |
- Zou J, Zhang C, Marjanovic J, Kisseleva MV, Majerus PW, and Wilson MP. Myotubularin-related protein (MTMR) 9 determines the enzymatic activity, substrate specificity, and role in autophagy of MTMR8. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9539-44. DOI:10.1073/pnas.1207021109 |
- Silhankova M, Port F, Harterink M, Basler K, and Korswagen HC. Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J. 2010 Dec 15;29(24):4094-105. DOI:10.1038/emboj.2010.278 |
- Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, Caldwell KK, Mochizuki Y, Majerus PW, and Mitchell CA. Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8660-5. DOI:10.1073/pnas.1033097100 |
- Guo Y, Cheong N, Zhang Z, De Rose R, Deng Y, Farber SA, Fernandes-Alnemri T, and Alnemri ES. Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J Biol Chem. 2004 Jun 4;279(23):24813-25. DOI:10.1074/jbc.M402049200 |
- Gokhale NA, Zaremba A, and Shears SB. Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J. 2011 Mar 15;434(3):415-26. DOI:10.1042/BJ20101437 |
- Lu M, Lin SC, Huang Y, Kang YJ, Rich R, Lo YC, Myszka D, Han J, and Wu H. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell. 2007 Jun 8;26(5):689-702. DOI:10.1016/j.molcel.2007.05.006 |
- Kharitidi D, Manteghi S, and Pause A. Pseudophosphatases: methods of analysis and physiological functions. Methods. 2014 Jan 15;65(2):207-18. DOI:10.1016/j.ymeth.2013.09.009 |