Difference between revisions of "Phosphatase Family Sac"
From PhosphataseWiki
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
[[Phosphatase classification|Phosphatase Classification]]: [[Phosphatase_Fold_CC1|Fold CC1]]: [[Phosphatase_Superfamily_CC1|Superfamily CC1]]: [[Phosphatase_Family_Sac|Family Sac]] | [[Phosphatase classification|Phosphatase Classification]]: [[Phosphatase_Fold_CC1|Fold CC1]]: [[Phosphatase_Superfamily_CC1|Superfamily CC1]]: [[Phosphatase_Family_Sac|Family Sac]] | ||
+ | |||
+ | === Subfamilies === | ||
The Sac family is found across eukaryotic genomes. It has four subfamilies, all of which are phosphoinositide phosphatases: | The Sac family is found across eukaryotic genomes. It has four subfamilies, all of which are phosphoinositide phosphatases: |
Revision as of 16:47, 7 October 2015
Phosphatase Classification: Fold CC1: Superfamily CC1: Family Sac
Subfamilies
The Sac family is found across eukaryotic genomes. It has four subfamilies, all of which are phosphoinositide phosphatases:
- SAC1 - an integral membrane phosphoinositide phosphatase located in endoplasmic reticulum (ER) and golgi apparatus. Its substrate in vivo is phosphatidylinositol 4-phosphate (PI4P), and it is also able to dephosphorylate other phosphoinositides in vitro. SAC1 is conserved in eukaryotes.
- INPP5F (SAC2) - a phosphoinositide phosphatase in the endocytic pathway. It is conserved in metazoa and fungi and is also found in a few plants and basal eukaryotes.
- FIG4 (SAC3) - a phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) phosphatase located in the vacuolar membrane. It is associated with a form of Charcot-Marie-Tooth disorder CMT4J, Yunis-Varón syndrome, and amyotrophic lateral sclerosis (ALS). FIG4 is found in most if not all eukaryotes.
- Synaptojanin - a PI(3,5)P2 phosphatase in the endocytic pathway. It has two phosphatase domains dephosphorylate 3-position and 5-position of PtdIns(3,5)P2, respectively. It is found throughout eukaryotes except excavate and some chromalveolate. Human has two members (SYNJ1/INPP5G and SYNJ2/INPP5H) which originated from a duplication event in tetrapods.