Difference between revisions of "Phosphatase Subfamily PTPRB"

From PhosphataseWiki
Jump to: navigation, search
(PTPRJ (CD148/DEP1))
(PTPRJ (CD148/DEP1))
Line 45: Line 45:
 
* EGFR. PTPRJ dephosphorylates and thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface <cite>Tarcic09</cite>.
 
* EGFR. PTPRJ dephosphorylates and thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface <cite>Tarcic09</cite>.
 
* FLT3. Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. PTPRJ negatively regulates FLT3 phosphorylation and signaling <cite>Arora11, Bohmer13</cite>. The activity can be turned off through oxidation of the DEP-1 catalytic cysteine <cite>Godfrey12</cite>.
 
* FLT3. Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. PTPRJ negatively regulates FLT3 phosphorylation and signaling <cite>Arora11, Bohmer13</cite>. The activity can be turned off through oxidation of the DEP-1 catalytic cysteine <cite>Godfrey12</cite>.
 +
* [http://en.wikipedia.org/wiki/Occludin Occludin] integral plasma-membrane protein which is the main component of the tight junctions <cite>Sallee09</cite>.
 +
* [http://en.wikipedia.org/wiki/Tight_junction_protein_1 ZO1] a protein located on a cytoplasmic membrane surface of intercellular tight junctions <cite>Salle09</cite>.
  
 
====== PTPRO (GLEPP1/PTP phi) ======
 
====== PTPRO (GLEPP1/PTP phi) ======

Revision as of 18:04, 26 February 2015


Phosphatase Classification: Fold CC1: Superfamily CC1: Family PTP: Subfamily PTPRB


PTPRC (CD45) is a vertebrate-specific receptor PTP involved in immune signaling.

Evolution

PTPRB subfamily is found across metazoan. It has multiple copies per genomes in bilateral.

Domain Structure

PTPRQ has at least two isoforms: one transmembrane and one cytosolic [1].

Functions

(summary)

PTPRB (VE-PTP)

PTPRB, a.k.a. vascular endothelial protein tyrosine phosphatase (VE-PTP), is expressed specifically in endothelial cells and regulates the spreading and migration of endothelial cells during angiogenesis [2]. PTPRB binds to vascular E-cadherin (VE-cadherin) through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin. But, the reduction of tyrosine phosphorylation seems independently of its enzymatic activity, since catalytically inactive mutant form of PTPRB had the same effect on VE-cadherin phosphorylation [3]. PTPRB associates with endothelial cell (EC)-selective receptor tyrosine kinase Tie2, which maintains vascular integrity [4, 5, 6, 7]. PTPRB regulates vascular endothelial growth factor receptor 2 activity thereby modulating the VEGF-response during angiogenesis [8].

PTPRB is intrinsically active and its inactivation is dependent on its ligand pleiotrophin (PTN) which is a platelet-derived growth factor-inducible, 18-kDa heparin-binding cytokine that signals diverse phenotypes in normal and deregulated cellular growth and differentiation [9]. PTPRB is glycosylated protein (phosphacan).

PTPRB mutations are observed in cancers. Its mutations are recurrent in angiosarcoma [10]. PTPRB mediates glial tumor cell adhesion by binding to tenascin C [11].

PTPRB interacts with neuronal receptors and promotes neurite outgrowth [12].

PTPRH (SAP-1)

PTPRH was mainly expressed in brain and liver and at a lower level in heart and stomach as a 4.2-kilobase mRNA, but it was not detected in pancreas or colon. In contrast, among cancer cell lines tested, PTPRH was highly expressed in pancreatic and colorectal cancer cells [13]. It is downregulated in advanced human hepatocellular carcinoma [14].

PTPRH induces apoptotic cell death and inhibit cell growth and motility. PTPRH inhibits integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. It dephosphorylates p130cas/BCAR1, a major focal adhesion (FA)-associated component of the integrin signaling pathway [15]. Forced expression of recombinant PTPRH results in the dephosphorylation of several additional FA-associated proteins, including focal adhesion kinase (FAK) and Dok-1 as well as in impairment of reorganization of the actin-based cytoskeleton [15]. Overexpression of PTPRH also results in the inactivation of both Akt (protein kinase B) and integrin-linked kinase (ILK) [16].

Besides, PTPRH binds to and dephosphorylates kinase Lck therefore regulating T cell function [17].

PTPRJ (CD148/DEP1)

PTPRJ is a tumor suppressor implicated in a range of cancers [18, 19, 20, 21, 22]. It plays a prominent role in negative regulation of growth factor signals, suppressing cell proliferation and transformation [23]. PTPRJ is expressed in several cell types, including vascular endothelial cells and duct epithelial cells [24].

Receptor PTPRJ has ligands:

  • Thrombospondin-1 [24], an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix interactions. It is a natural inhibitor of neovascularization and tumorigenesis in healthy tissue.
  • Syndecan-2 [25], a heparan sulfate proteoglycan participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins.

Substrates:

  • EGFR. PTPRJ dephosphorylates and thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface [26].
  • FLT3. Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. PTPRJ negatively regulates FLT3 phosphorylation and signaling [20, 27]. The activity can be turned off through oxidation of the DEP-1 catalytic cysteine [28].
  • Occludin integral plasma-membrane protein which is the main component of the tight junctions [29].
  • ZO1 a protein located on a cytoplasmic membrane surface of intercellular tight junctions [30].
PTPRO (GLEPP1/PTP phi)

PTPRO is a tumor suppressor and frequently methylated in various types of cancers [31, 32, 33, 34, 35, 36]. PTPRO can be reliably detected in peripheral blood samples, and is a potential biomarker in cancer diagnosis and prognosis. PTPRO has multiple isoforms. Monoclonal and polyclonal antibodies raised against a human GLEPP1 fusion protein recognized a protein with distribution restricted to the glomerulus in human kidney [37]. Interestingly, dimerization of PTPRO inhibit its activity, as dimerization of a related RPTP, CD148/PTPRJ, increases activity [38].

PTPRO dephosphorylates kinases SYK at BCR-triggered tyrosyl phosphorylation [39], ZAP70 (SYK family kinase) [40], Lyn (Src family kinase)[40], TrkC (Trk family kinase) [38], and ErbB2 (EGFR family kinase) [41]. PTPRO also dephosphorylates paxillin [42, 43] and VCP/p97 [36].

PTPRO interacts with Toll-like receptor 4 (TLR4) a gene plays diverse roles in HCC tumorigenesis and progression [44]. PTPRO dephosphorylates and inactivates the oncogenic fusion protein BCR/ABL [45].

In human and mouse models of hepatic ischemia reperfusion (IR) injury, PTPRO activates NF-κB in a positive feedback manner. PTPRO level was decreased in the early phase but reversed in the late phase. In vitro studies demonstrated that NF-κB up-regulated PTPRO transcription. PTPRO deficiency in mouse resulted in reduction of NF-κB activation in both hepatocytes and macrophages and was correlated to c-Src phosphorylation; PTPRO in hepatocytes alleviated, but PTPROt in macrophages exacerbated IR injury [46].

PTPRO regulates the growth of specific B-cell subpopulations by promoting G0/G1 arrest [47]. PTPRO mutations can cause autosomal-recessive nephrotic syndrome [48].

PTPRQ

PTPRQ is a phosphatidylinositol phosphatase rather than protein tyrosine phosphatase as all the other members in PTP family. PTPRQ has low phosphatase activity against tyrosine-phosphorylated peptide and protein substrates but can dephosphorylate a broad range of phosphatidylinositol phosphates, including phosphatidylinositol 3,4,5-trisphosphate and most phosphatidylinositol monophosphates and diphosphates. Independent research has shown PTPRQ has a strong preferences for PI(3,4,5)P3 over other PI substrates [49]. The activity depends on the WPE motif in place of the WPD motif, rather than substitutions in Cx5R motif. Overexpression of PTPRQ in cultured cells inhibits proliferation and induces apoptosis. An E2171D mutation that retains or increases tyrosine phosphatase activity but eliminates phosphatidylinositol phosphatase activity, eliminates the inhibitory effects on proliferation and apoptosis. All the evidences above has shown that PTPRQ is a real phosphatidylinositol phosphatase [50].

Mutations in PTPRQ can cause hearing impairment (DFNB84) in a nonconsanguineous Dutch family and a consanguineous Moroccan family with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). Sequence analysis of the PTPRQ gene in members of the families revealed a nonsense mutation in the Dutch family and a missense mutation in the Moroccan family. The missense mutation is located in one of the FN3 domains. The nonsense mutation results in a truncated protein with only a small number of FN3 domains and no transmembrane or phosphatase domain [51, 52]. Thus, the disease may be caused by the misfunction of transmembrane isoform.

PTPRQ has also been shown to involved in differentiation during adipogenesis of human mesenchymal stem cells [53] and regulation the adhesion and migration of mesangial cells in response to injury [54].

References

  1. Seifert RA, Coats SA, Oganesian A, Wright MB, Dishmon M, Booth CJ, Johnson RJ, Alpers CE, and Bowen-Pope DF. PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res. 2003 Jul 15;287(2):374-86. DOI:10.1016/s0014-4827(03)00121-6 | PubMed ID:12837292 | HubMed [Seifert03]
  2. Mori M, Murata Y, Kotani T, Kusakari S, Ohnishi H, Saito Y, Okazawa H, Ishizuka T, Mori M, and Matozaki T. Promotion of cell spreading and migration by vascular endothelial-protein tyrosine phosphatase (VE-PTP) in cooperation with integrins. J Cell Physiol. 2010 Jul;224(1):195-204. DOI:10.1002/jcp.22122 | PubMed ID:20301196 | HubMed [Mori10]
  3. Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, and Vestweber D. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 2002 Sep 16;21(18):4885-95. DOI:10.1093/emboj/cdf497 | PubMed ID:12234928 | HubMed [Nawroth02]
  4. Fachinger G, Deutsch U, and Risau W. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene. 1999 Oct 21;18(43):5948-53. DOI:10.1038/sj.onc.1202992 | PubMed ID:10557082 | HubMed [Fachinger99]
  5. Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF, and Vestweber D. VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol. 2009 May 18;185(4):657-71. DOI:10.1083/jcb.200811159 | PubMed ID:19451274 | HubMed [Winderlich09]
  6. Yacyshyn OK, Lai PF, Forse K, Teichert-Kuliszewska K, Jurasz P, and Stewart DJ. Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells. Angiogenesis. 2009;12(1):25-33. DOI:10.1007/s10456-008-9126-0 | PubMed ID:19116766 | HubMed [Yacyshyn09]
  7. Shen J, Frye M, Lee BL, Reinardy JL, McClung JM, Ding K, Kojima M, Xia H, Seidel C, Lima e Silva R, Dong A, Hackett SF, Wang J, Howard BW, Vestweber D, Kontos CD, Peters KG, and Campochiaro PA. Targeting VE-PTP activates TIE2 and stabilizes the ocular vasculature. J Clin Invest. 2014 Oct;124(10):4564-76. DOI:10.1172/JCI74527 | PubMed ID:25180601 | HubMed [Shen14]
  8. Mellberg S, Dimberg A, Bahram F, Hayashi M, Rennel E, Ameur A, Westholm JO, Larsson E, Lindahl P, Cross MJ, and Claesson-Welsh L. Transcriptional profiling reveals a critical role for tyrosine phosphatase VE-PTP in regulation of VEGFR2 activity and endothelial cell morphogenesis. FASEB J. 2009 May;23(5):1490-502. DOI:10.1096/fj.08-123810 | PubMed ID:19136612 | HubMed [Mellberg09]
  9. Meng K, Rodriguez-Peña A, Dimitrov T, Chen W, Yamin M, Noda M, and Deuel TF. Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2603-8. DOI:10.1073/pnas.020487997 | PubMed ID:10706604 | HubMed [Meng00]
  10. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke SL, Pillay N, Vollan HKM, Papaemmanuil E, Koss H, Bunney TD, Hardy C, Joseph OR, Martin S, Mudie L, Butler A, Teague JW, Patil M, Steers G, Cao Y, Gumbs C, Ingram D, Lazar AJ, Little L, Mahadeshwar H, Protopopov A, Al Sannaa GA, Seth S, Song X, Tang J, Zhang J, Ravi V, Torres KE, Khatri B, Halai D, Roxanis I, Baumhoer D, Tirabosco R, Amary MF, Boshoff C, McDermott U, Katan M, Stratton MR, Futreal PA, Flanagan AM, Harris A, and Campbell PJ. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014 Apr;46(4):376-379. DOI:10.1038/ng.2921 | PubMed ID:24633157 | HubMed [Behjati14]
  11. Adamsky K, Schilling J, Garwood J, Faissner A, and Peles E. Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene. 2001 Feb 1;20(5):609-18. DOI:10.1038/sj.onc.1204119 | PubMed ID:11313993 | HubMed [Adamsky01]
  12. Garwood J, Heck N, Reichardt F, and Faissner A. Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem. 2003 Jun 27;278(26):24164-73. DOI:10.1074/jbc.M211721200 | PubMed ID:12700241 | HubMed [Garwood03]
  13. Matozaki T, Suzuki T, Uchida T, Inazawa J, Ariyama T, Matsuda K, Horita K, Noguchi H, Mizuno H, and Sakamoto C. Molecular cloning of a human transmembrane-type protein tyrosine phosphatase and its expression in gastrointestinal cancers. J Biol Chem. 1994 Jan 21;269(3):2075-81. PubMed ID:8294459 | HubMed [Matozaki94]
  14. Nagano H, Noguchi T, Inagaki K, Yoon S, Matozaki T, Itoh H, Kasuga M, and Hayashi Y. Downregulation of stomach cancer-associated protein tyrosine phosphatase-1 (SAP-1) in advanced human hepatocellular carcinoma. Oncogene. 2003 Jul 24;22(30):4656-63. DOI:10.1038/sj.onc.1206588 | PubMed ID:12879010 | HubMed [Nagano03]
  15. Noguchi T, Tsuda M, Takeda H, Takada T, Inagaki K, Yamao T, Fukunaga K, Matozaki T, and Kasuga M. Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas. J Biol Chem. 2001 May 4;276(18):15216-24. DOI:10.1074/jbc.M007208200 | PubMed ID:11278335 | HubMed [Noguchi01]
  16. Takada T, Noguchi T, Inagaki K, Hosooka T, Fukunaga K, Yamao T, Ogawa W, Matozaki T, and Kasuga M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J Biol Chem. 2002 Sep 13;277(37):34359-66. DOI:10.1074/jbc.M206541200 | PubMed ID:12101188 | HubMed [Takada02]
  17. Ito T, Okazawa H, Maruyama K, Tomizawa K, Motegi S, Ohnishi H, Kuwano H, Kosugi A, and Matozaki T. Interaction of SAP-1, a transmembrane-type protein-tyrosine phosphatase, with the tyrosine kinase Lck. Roles in regulation of T cell function. J Biol Chem. 2003 Sep 12;278(37):34854-63. DOI:10.1074/jbc.M300648200 | PubMed ID:12837766 | HubMed [Ito03]
  18. Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P, Lea R, Gandhi MK, and Griffiths LR. High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin's lymphoma. Genes Chromosomes Cancer. 2013 May;52(5):467-79. DOI:10.1002/gcc.22044 | PubMed ID:23341091 | HubMed [AyaBonilla13]
  19. Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M, Mawrin C, and Böhmer FD. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol. 2011 Jul;21(4):405-18. DOI:10.1111/j.1750-3639.2010.00464.x | PubMed ID:21091576 | HubMed [Petermann11]
  20. Arora D, Stopp S, Böhmer SA, Schons J, Godfrey R, Masson K, Razumovskaya E, Rönnstrand L, Tänzer S, Bauer R, Böhmer FD, and Müller JP. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem. 2011 Apr 1;286(13):10918-29. DOI:10.1074/jbc.M110.205021 | PubMed ID:21262971 | HubMed [Arora11]
  21. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, Schackert HK, Görgens H, Hahn MM, Kamping EJ, Vreede L, Hoenselaar E, van der Looij E, Goossens M, Churchman M, Carvajal-Carmona L, Tomlinson IP, de Bruijn DR, Van Kessel AG, and Kuiper RP. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology. 2010 Dec;139(6):2221-4. DOI:10.1053/j.gastro.2010.08.063 | PubMed ID:21036128 | HubMed [Venkatachalam10]
  22. Omerovic J, Clague MJ, and Prior IA. Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells. Biochem J. 2010 Jan 27;426(1):65-72. DOI:10.1042/BJ20091413 | PubMed ID:19922411 | HubMed [Omerovic10]
  23. Smart CE, Askarian Amiri ME, Wronski A, Dinger ME, Crawford J, Ovchinnikov DA, Vargas AC, Reid L, Simpson PT, Song S, Wiesner C, French JD, Dave RK, da Silva L, Purdon A, Andrew M, Mattick JS, Lakhani SR, Brown MA, and Kellie S. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. PLoS One. 2012;7(7):e40742. DOI:10.1371/journal.pone.0040742 | PubMed ID:22815804 | HubMed [Smart12]
  24. Takahashi K, Mernaugh RL, Friedman DB, Weller R, Tsuboi N, Yamashita H, Quaranta V, and Takahashi T. Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1985-90. DOI:10.1073/pnas.1106171109 | PubMed ID:22308318 | HubMed [Takahashi12]
  25. Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, and Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell. 2011 Oct;22(19):3609-24. DOI:10.1091/mbc.E11-02-0099 | PubMed ID:21813734 | HubMed [Whiteford11]
  26. Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F, Nathanson D, Takahashi T, Mischel PS, Ng T, and Yarden Y. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol. 2009 Nov 17;19(21):1788-98. DOI:10.1016/j.cub.2009.09.048 | PubMed ID:19836242 | HubMed [Tarcic09]
  27. Böhmer SA, Weibrecht I, Söderberg O, and Böhmer FD. Association of the protein-tyrosine phosphatase DEP-1 with its substrate FLT3 visualized by in situ proximity ligation assay. PLoS One. 2013;8(5):e62871. DOI:10.1371/journal.pone.0062871 | PubMed ID:23650535 | HubMed [Bohmer13]
  28. Godfrey R, Arora D, Bauer R, Stopp S, Müller JP, Heinrich T, Böhmer SA, Dagnell M, Schnetzke U, Scholl S, Östman A, and Böhmer FD. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ. Blood. 2012 May 10;119(19):4499-511. DOI:10.1182/blood-2011-02-336446 | PubMed ID:22438257 | HubMed [Godfrey12]
  29. Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T, Suster S, Morrison C, and Jacob ST. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13844-9. DOI:10.1073/pnas.0405451101 | PubMed ID:15356345 | HubMed [Motiwala04]
  30. Motiwala T, Majumder S, Kutay H, Smith DS, Neuberg DS, Lucas DM, Byrd JC, Grever M, and Jacob ST. Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia. Clin Cancer Res. 2007 Jun 1;13(11):3174-81. DOI:10.1158/1078-0432.CCR-06-1720 | PubMed ID:17545520 | HubMed [Motiwala07]
  31. Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, and Jacob ST. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol. 2009 Feb;23(2):176-87. DOI:10.1210/me.2008-0211 | PubMed ID:19095770 | HubMed [Ramaswamy09]
  32. You YJ, Chen YP, Zheng XX, Meltzer SJ, and Zhang H. Aberrant methylation of the PTPRO gene in peripheral blood as a potential biomarker in esophageal squamous cell carcinoma patients. Cancer Lett. 2012 Feb 28;315(2):138-44. DOI:10.1016/j.canlet.2011.08.032 | PubMed ID:22099875 | HubMed [You12]
  33. Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF, Zheng XX, Chen YP, and Zhang H. PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med. 2013 Oct 3;11:245. DOI:10.1186/1479-5876-11-245 | PubMed ID:24090193 | HubMed [Huang13]
  34. Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C, Freitas MA, Ghoshal K, and Jacob ST. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem. 2013 Aug;114(8):1810-8. DOI:10.1002/jcb.24525 | PubMed ID:23533167 | HubMed [Hsu13]
  35. Wiggins RC, Wiggins JE, Goyal M, Wharram BL, and Thomas PE. Molecular cloning of cDNAs encoding human GLEPP1, a membrane protein tyrosine phosphatase: characterization of the GLEPP1 protein distribution in human kidney and assignment of the GLEPP1 gene to human chromosome 12p12-p13. Genomics. 1995 May 1;27(1):174-81. DOI:10.1006/geno.1995.1021 | PubMed ID:7665166 | HubMed [Wiggins95]
  36. Hower AE, Beltran PJ, and Bixby JL. Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J Neurochem. 2009 Sep;110(5):1635-47. DOI:10.1111/j.1471-4159.2009.06261.x | PubMed ID:19573017 | HubMed [Hower09]
  37. Chen L, Juszczynski P, Takeyama K, Aguiar RC, and Shipp MA. Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood. 2006 Nov 15;108(10):3428-33. DOI:10.1182/blood-2006-03-013821 | PubMed ID:16888096 | HubMed [Chen06]
  38. Motiwala T, Datta J, Kutay H, Roy S, and Jacob ST. Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem. 2010 Jul 1;110(4):846-56. DOI:10.1002/jcb.22593 | PubMed ID:20564182 | HubMed [Motiwala10]
  39. Yu M, Lin G, Arshadi N, Kalatskaya I, Xue B, Haider S, Nguyen F, Boutros PC, Elson A, Muthuswamy LB, Tonks NK, and Muthuswamy SK. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation. Mol Cell Biol. 2012 Oct;32(19):3913-24. DOI:10.1128/MCB.00068-12 | PubMed ID:22851698 | HubMed [Yu12]
  40. Pixley FJ, Lee PS, Dominguez MG, Einstein DB, and Stanley ER. A heteromorphic protein-tyrosine phosphatase, PTP phi, is regulated by CSF-1 in macrophages. J Biol Chem. 1995 Nov 10;270(45):27339-47. DOI:10.1074/jbc.270.45.27339 | PubMed ID:7592997 | HubMed [Pixley95]
  41. Xu D, Wang X, Yan S, Yin Y, Hou J, Wang X, and Sun B. Interaction of PTPRO and TLR4 signaling in hepatocellular carcinoma. Tumour Biol. 2014 Oct;35(10):10267-73. DOI:10.1007/s13277-014-2302-5 | PubMed ID:25034527 | HubMed [Xu14]
  42. Motiwala T, Majumder S, Ghoshal K, Kutay H, Datta J, Roy S, Lucas DM, and Jacob ST. PTPROt inactivates the oncogenic fusion protein BCR/ABL and suppresses transformation of K562 cells. J Biol Chem. 2009 Jan 2;284(1):455-464. DOI:10.1074/jbc.M802840200 | PubMed ID:18997174 | HubMed [Motiwala09]
  43. Aguiar RC, Yakushijin Y, Kharbanda S, Tiwari S, Freeman GJ, and Shipp MA. PTPROt: an alternatively spliced and developmentally regulated B-lymphoid phosphatase that promotes G0/G1 arrest. Blood. 1999 Oct 1;94(7):2403-13. PubMed ID:10498613 | HubMed [Aguiar99]
  44. Ozaltin F, Ibsirlioglu T, Taskiran EZ, Baydar DE, Kaymaz F, Buyukcelik M, Kilic BD, Balat A, Iatropoulos P, Asan E, Akarsu NA, Schaefer F, Yilmaz E, Bakkaloglu A, and PodoNet Consortium. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am J Hum Genet. 2011 Jul 15;89(1):139-47. DOI:10.1016/j.ajhg.2011.05.026 | PubMed ID:21722858 | HubMed [Ozaltin11]
  45. Yu KR, Kim YJ, Jung SK, Ku B, Park H, Cho SY, Jung H, Chung SJ, Bae KH, Lee SC, Kim BY, Erikson RL, Ryu SE, and Kim SJ. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1522-9. DOI:10.1107/S0907444913010457 | PubMed ID:23897475 | HubMed [Yu13]
  46. Oganesian A, Poot M, Daum G, Coats SA, Wright MB, Seifert RA, and Bowen-Pope DF. Protein tyrosine phosphatase RQ is a phosphatidylinositol phosphatase that can regulate cell survival and proliferation. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7563-8. DOI:10.1073/pnas.1336511100 | PubMed ID:12802008 | HubMed [Oganesian03]
  47. Shahin H, Rahil M, Abu Rayan A, Avraham KB, King MC, Kanaan M, and Walsh T. Nonsense mutation of the stereociliar membrane protein gene PTPRQ in human hearing loss DFNB84. J Med Genet. 2010 Sep;47(9):643-5. DOI:10.1136/jmg.2009.075697 | PubMed ID:20472657 | HubMed [Shahin10]
  48. Schraders M, Oostrik J, Huygen PL, Strom TM, van Wijk E, Kunst HP, Hoefsloot LH, Cremers CW, Admiraal RJ, and Kremer H. Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet. 2010 Apr 9;86(4):604-10. DOI:10.1016/j.ajhg.2010.02.015 | PubMed ID:20346435 | HubMed [Schraders10]
  49. Jung H, Kim WK, Kim DH, Cho YS, Kim SJ, Park SG, Park BC, Lim HM, Bae KH, and Lee SC. Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun. 2009 May 29;383(2):252-7. DOI:10.1016/j.bbrc.2009.04.001 | PubMed ID:19351528 | HubMed [Jung09]
  50. Wright MB, Hugo C, Seifert R, Disteche CM, and Bowen-Pope DF. Proliferating and migrating mesangial cells responding to injury express a novel receptor protein-tyrosine phosphatase in experimental mesangial proliferative glomerulonephritis. J Biol Chem. 1998 Sep 11;273(37):23929-37. DOI:10.1074/jbc.273.37.23929 | PubMed ID:9727007 | HubMed [Wright98]
  51. Brunner PM, Heier PC, Mihaly-Bison J, Priglinger U, Binder BR, and Prager GW. Density enhanced phosphatase-1 down-regulates urokinase receptor surface expression in confluent endothelial cells. Blood. 2011 Apr 14;117(15):4154-61. DOI:10.1182/blood-2010-09-307694 | PubMed ID:21304107 | HubMed [Brunner11]
  52. Pixley FJ, Lee PS, Condeelis JS, and Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Mol Cell Biol. 2001 Mar;21(5):1795-809. DOI:10.1128/MCB.21.5.1795-1809.2001 | PubMed ID:11238916 | HubMed [Pixley01]
All Medline abstracts: PubMed | HubMed